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Abstract One- and two-way thermomechanically coupled micromechanical analyses of multiphase composites
are presented. In the first type of thermomechanical coupling, a constant temperature that affects the mechanical
field only is prescribed at any point of the composite’s constituents. In the two-way thermomechanical coupling,
on the other hand, a mutual interaction exists between the mechanical and temperature fields. It is shown that the
macroscopic coupled energy equation that is established from a homogenization procedure cannot provide reliable
information about the induced temperature that is caused by an applied far-field mechanical loading of the composite.
The details of the induced temperature-field variations can be obtained, on the other hand, by the derived two-way
thermomechanically coupled micromechanical analysis, thus enabling the identification of critical hot spots in the
mechanically loaded composite. Results exhibit, in particular, the induced temperature field in metal-matrix and
polymer-matrix composites.

Keywords High-fidelity generalized method of cells · Homogenization · Micromechanical analysis ·
Thermomechanical coupling

1 Introduction

There is a considerable amount of research that incorporates the thermomechanical coupling (TMC) between
mechanical and thermal effects in micromechanical analyses of composites; see the books by Christensen
[1, Chapter 9], Aboudi [2], Parton and Kudryavtsev [3], Kalamkarov and Kolpakov [4], Nemat-Nasser and Hori [5]
and the review articles by Aboudi [6] and Arnold et al. [7], for example. However, in most of these investigations
the thermomechanical coupling (TMC) is one-way, namely, the thermal effects affect the mechanical field (just
like in thermal-stress analyses) but not vise versa. Furthermore, whenever a one-way micromechanical analysis is
employed, the temperature deviation from a reference temperature is a constant that is prescribed at every point of
the composite’s phases. In actual situations, there is a two-way TMC in the sense that a mutual thermomechanical
interaction between the mechanical and thermal fields exists at every location of the composite’s phases. As a result,
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a mechanical loading of a composite gives rise to a spatially dependent temperature field that needs to be determined
by a suitable two-way TMC micromechanical analysis.

The purpose of the present paper is to generalized a micromechanical model, referred to as “high-fidelity
generalized method of cells” (HFGMC), in order to incorporate two-way TMC capability. The HFGMC with
one-way coupling is capable to predict the behavior of multiphase inelastic composites with periodic micro-
structure by employing the homogenization technique. Its accuracy and reliability was demonstrated by Aboudi
et al. [8] and [9], by comparisons with analytical solutions that can be established in certain cases and with
finite-element solutions. The method has been employed also for the prediction of the behavior of elastoplas-
tic composites with imperfect bonding between the constituents [10], viscoelastic-viscoplastic composites [11],
electro-magneto-thermoelastic composites [12], and composites that are subjected to large deformations; see a
recent review by Aboudi [13], which includes also references to its predecessor GMC micromechanical model.
It should be noted that the HFGMC with one-way TMC has been implemented into the recently developed mi-
cromechanics analysis code MAC/GMC by NASA Glenn Research Center, which has many user friendly features
and significant flexibility; see [14] for the most recent version of its user guides. The predecessor GMC micro-
mechanical model was employed by Williams and Aboudi [15] to investigate two-way TMC of metal matrix
composites.

As a result of the offered generalization of the HFGMC model to incorporate the two-way TMC, macroscopic
constitutive equations that govern the thermomechanical behavior of the composite are established. These rela-
tions are based on the derivation of the mechanical, thermal and inelastic concentration tensors and scalars. These
concentration tensors and scalars are established by the homogenization of the periodic composite, in conjunction
with the imposition of the coupled equilibrium and energy equations, and by imposing the continuity of tractions,
displacements, heat fluxes and temperatures at the interfaces between the various materials, and by the application
of the periodic boundary conditions. The latter conditions ensure that the tractions, displacements heat fluxes and
temperatures are identical at the opposite boundaries of a repeating unit cell (RUC) that characterizes the periodic
composite. These three types of concentration tensors are interrelated due to the TMC effects. The established mac-
roscopic constitutive equations are given in terms of the effective stiffness tensor and the global thermal and inelastic
stress tensors. It is worth mentioning that the effective stiffness tensor of the composite involves the mechanical
and thermal concentrations tensors.

The present paper is organized as follows. The homogenization procedure for a one-way TMC, from which the
effective stiffness and thermal-stress tensors are established, is reviewed in Sect. 2. This section also includes a brief
presentation of HFGMC with a one-way TMC for multiphase composites with inelastic constituents. In Sect. 3,
the effective thermal-conductivity tensor and the effective specific heat at constant deformation and constant stress
are established, together with the macroscopic energy equation which involves the macroscopic thermomechanical
effects. A different homogenization procedure that predicts these effective parameters and macroscopic energy
equation was previously presented by Ene [16]. As it is presently shown, this macroscopic energy equation is not
capable to provide the temperature variations in the composite’s phases that are induced by the TMC effects. On the
other hand, these temperature variations can be obtained from a detailed two-way inelastic micromechanical anal-
ysis, in conjunction with various types of micromechanically established TMC concentration tensors. Applications
that show the effect of TMC are given in Sect. 4 for metal-matrix (which involves inelastic flow) and polymer-
matrix composites. In these cases, the average of the induced temperature in the composite and the temperature
that is predicted by the macroscopic energy equation are shown together with surface plots that exhibit the detailed
variation of the induced temperature due to several types of far-field mechanical loadings.

2 One-way thermomechanically coupled micromechanical analysis

In the framework of HFGMC micromechanics that models the behavior of periodic multiphase composites which is
described in this section, the homogenization technique, in which the TMC in thermoelastic constituents is one-way,
is described. This is followed by the method of solution of the RUC problem.
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(a)

(b)

(c)

Fig. 1 (a) A multiphase composite with triply periodic microstructures defined with respect to global coordinates (x1, x2, x3). (b) The
repeating unit cell is represented with respect to local coordinates (y1, y2, y3). It is divided into Nα,Nβ and Nγ subcells, in the y1-, y2-

and y3-directions, respectively. (c) A characteristic subcell (αβγ ) with local coordinates ȳ
(α)
1 , ȳ

(β)
2 and ȳ

(γ )
3 whose origin is located at

its center

2.1 The homogenization procedure

Consider a multiphase composite in which the microstructures are distributed periodically in the space that is
given with respect to the global coordinates (x1, x2, x3); see Fig. 1(a). Figure 1(b) shows the RUC of the periodic
composite. In the framework of the homogenization method the displacements are asymptotically expanded as
follows

u(x, y) = u0(x, y) + δ u1(x, y) + · · · , (1)

where x = (x1, x2, x3) defines the macroscopic (global) coordinate system, and y = (y1, y2, y3) are the microscopic
(local) coordinates that are defined with respect to the RUC. The size of the unit cell is further assumed to be much
smaller than the size of the body so that the relation between the global and local systems is

y = x
δ
, (2)

where δ is a small scaling parameter characterizing the size of the unit cell. This implies that a movement of order
unity on the local scale corresponds to a very small movement on the global scale.

The homogenization method is applied to composites with periodic microstructures. Thus

uξ (x, y) = uξ (x, y + npdp) (3)

with ξ = 0, 1, . . ., where np are arbitrary integer numbers and the constant vectors dp determine the period of the
microstructure.
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Due to the change of coordinates from the global to the local systems, the following relation must be employed
in evaluating the derivative of a field quantity:

∂

∂x
→ ∂

∂x
+ 1

δ

∂

∂y
, or ∇x → ∇x + 1

δ
∇y. (4)

The quantities u0 are the displacements in the homogenized region and hence they are not functions of y.
Let

u0 = u0(x) ≡ ū (5)

and

u1 ≡ ũ(x, y), (6)

where the latter are the fluctuating displacements which are unknown periodic functions. These displacements arise
due to the heterogeneity of the medium.

The above displacement expansion yields the corresponding strain tensor expansion

ε = ε0
x + ε1

y + O(δ), (7)

where in conjunction with Eq. (4),

ε0
x(x) ≡ ε̄(x) = 1

2
(∇xū + ū∇x) (8)

and

ε1
y(x, y) ≡ ε̃(x, y) = 1

2
(∇yũ + ũ∇y). (9)

This shows that the strain components can be represented as a sum of the average strain ε̄(x) in the composite and
a fluctuating strain ε̃(x, y). The average of the strain tensor in the RUC is given by

1

Vy

∫
Vy

ε dVy = 1

Vy

∫
Vy

(ε̄ + ε̃) dVy = ε̄ + 1

2Vy

∫
�y

[ũ ⊗ n + n ⊗ ũ] d�Y = ε̄, (10)

where the divergence theorem has been employed with Vy being the volume of the RUC and �Y is its surface. The
resulting surface integral is zero because the fluctuating displacement ũ being periodic is equal on opposite sides
of the RUC, while the normals n there have opposite directions. This implies that the average of the fluctuating
strain taken over the RUC vanishes. For a homogeneous material it is obvious that the fluctuating displacements
and strains vanish identically.

For a composite that is subjected to homogeneous deformation, one can use Eq. (7) to represent the displacement
in the form

u(x, y) = ε̄ · x + δũ + O(δ2), (11)

where ε̄ · x represents the contribution of the average strain to the total displacement field.
For a thermoelastic anisotropic material the stress tensor σ is related to the strain ε tensor and temperature

according to the Hooke’s law as follows:

σ = C : ε − � T , (12)

where C(x) is the fourth-order stiffness tensor of a phase of the composite, �(x) is its thermal-stress tensor, namely
� = C : α, where α is the coefficient of thermal-expansion tensor, and T is the temperature deviation from a ref-
erence temperature. For one-way TMC, the latter is a prescribed constant at every point of the composite’s phases.
The stiffness and thermal-stress tensors form periodic functions that are defined in the RUC in terms of the local
coordinates y such that

C(x) = C(y), �(x) = �(y). (13)
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Substitution of Eq. (7) in (12) yields

σ = C : (ε̄(x) + ε̃(x, y)) − � T + O(δ). (14)

In the absence of a body force, the equilibrium equation yields(
∇x + 1

δ
∇y

)
· σ = 0. (15)

By equating terms of the order of 1/δ one obtains that

∇y · [
C(y) : (ε̄(x) + ε̃(x, y)) − �(y) T

] = 0. (16)

Let us define the following stress quantities

σ 0 = C(y) : ε̄(x) − �(y) T , (17)

σ 1 = C(y) : ε̃(x, y) (18)

with the latter being the fluctuating stresses. It follows from Eq. (16) that

∇y · σ 1 + ∇y · σ 0 = 0, (19)

which is the strong form of the equilibrium equation. It is readily seen that the first term in Eq. (19) involves
the unknown fluctuating periodic displacements ũ, while the second term produces pseudo-body forces whose
derivatives are actually zero everywhere except at the interfaces between the phases.

For given values of the average strains ε̄ the unknown fluctuating displacements are governed by Eq. (19) subject
to periodic boundary conditions that are prescribed at the boundaries of the RUC. In addition to these boundary
conditions one needs to impose the continuity of displacements and tractions at the internal interfaces between the
phases that fill the RUC. Referring to Fig. 1(b), one observes that the RUC is given by a parallelepiped defined with
respect to the local coordinates by 0 ≤ y1 ≤ D, 0 ≤ y2 ≤ H , 0 ≤ y3 ≤ L. Consequently, the periodic boundary
conditions are given by

ũ (y1 = 0) = ũ (y1 = D),
(e1)

t (y1 = 0) =(e1)

t (y1 = D), ũ (y2 = 0) = ũ (y2 = H), (20,21,22)

(e2)

t (y2 = 0) =(e2)

t (y2 = H), ũ (y3 = 0) = ũ (y3 = L),
(e3)

t (y3 = 0) =(e3)

t (y3 = L). (23,24,25)

where the tractions on the surfaces of the RUC are denoted by
(ei )

t , with ei being the corresponding unit normal

vectors. Any traction vector
(ei )

t is expressed in terms of the total stress σ which is given by

σ = σ 0 + σ 1 + O(δ), (26)

where σ 0 and σ 1 are given by Eqs. (17) and (18), respectively. It is also necessary to fix the displacement field at a
point in the RUC (e.g. at a corner).

Once a solution of (19), subject to the internal interfacial continuity conditions (displacements and tractions)
and periodic boundary conditions (20)–(25) has been established, one can proceed and determine the mechanical
and thermal-strain concentration tensors associated with the defined RUC. These tensors express the local strain in
the cell in terms of the global applied external strain and temperature (localization). To this end let us define the
fourth-order tensor Ã(y) and second-order tensor AT (y) as follows

ε̃(y) = Ã(y) : ε̄ + AT (y) T . (27)

They relate the fluctuating strain to the applied average strain and temperature. Tensor AT (y) is referred to as the
thermal-strain concentration tensor. By using Eq. (7), we readily obtain the mechanical strain concentration tensor
AM(y) as follows
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ε(x, y) = ε̄(x) + Ã(y) : ε̄(x) + AT (y) T = [I4 + Ã(y)] : ε̄(x) + AT (y) T ≡ AM(y) : ε̄(x) + AT (y) T , (28)

where I4 is the fourth-order identity tensor.
To obtain the strain concentration tensor AM(y), a series of isothermal problems must be solved as follows. Solve

Eq. (19) in conjunction with the internal interfacial and periodic boundary conditions with ε̄11 = 1 and all other
components being equal to zero. The solution of Eq. (19) readily provides AM

ij11 for i, j = 1, 2, 3. This procedure

is repeated with ε̄22 = 1 and all other components equal to zero which provides AM
ij22, and so on. Tensor AT (y) is

computed when T �= 0 in the absence of mechanical effects.
Once the mechanical-strain concentration tensor AM(y) has been determined, it is possible to compute the

effective stiffness tensor of the multiphase composite as follows. Substitution of ε given by Eq. (28) in (12) yields

σ (y) = C(y) :
[
AM(y) : ε̄ + AT (y) T

]
− �(y) T . (29)

Taking the average of both sides of Eq. (29) over the RUC yields the average stress in the composite in terms of the
average strain and temperature via the effective elastic stiffness tensor C∗ and effective thermal-stress tensor �∗,
namely

σ̄ = C∗ : ε̄ − �∗ T , (30)

where

C∗ = 1

Vy

∫
Vy

C(y) : AM(y) dVy (31)

and

�∗ = 1

Vy

∫
Vy

[
�(y) − C(y) : AT (y)

]
dVy. (32)

Alternatively, it is possible to employ Levin’s theorem [17] to establish �∗ directly from the mechanical-strain
concentration tensor as follows

�∗ = 1

Vy

∫
Vy

[AM ]tr(y) : �(y) dVy, (33)

where [AM ]tr is the transpose of AM .

2.2 Solution of the repeating unit-cell problem

The previous analysis has been presented for a multiphase composite with thermoelastic phases in which one-way
thermomechanical coupling exists. The HFGMC micromechanical model is employed herein to predict the effec-
tive thermo-inelastic behavior of the composite. This theory has been fully described by Aboudi [12] in the case of
linearly electro-magneto–thermo-elastic materials. Thus, thermo-elastic phases can be obtained as a special case.
The inclusion of an inelastic phase follows the analysis presented by Aboudi el al. [8,9] for the two-dimensional
case of continuous fibers. In the present paper, this micromechanical model is briefly outlined in the following.

This model is based on a homogenization technique for composites with periodic microstructure as shown in
Fig. 1(a) in terms of the global coordinates (x1, x2, x3). The parallelepiped RUC, Fig. 1(b), defined with respect
to local coordinates (y1, y2, y3), of such a composite is divided into Nα,Nβ and Nγ subcells in the y1-, y2- and
y3-directions, respectively. Each subcell is labeled by the indices (αβγ ) with α = 1, . . . , Nα , β = 1, . . . , Nβ and
γ = 1, . . . , Nγ , and may contain a distinct homogeneous material. The dimensions of subcell (αβγ ) in the y1-,

y2- and y3-directions are denoted by dα, hβ and lγ , respectively. A local coordinate system (ȳ
(α)
1 , ȳ

(β)
2 , ȳ

(γ )
3 ) is

introduced in each subcell whose origin is located at its center; see Fig. 1(c).
The stress σ (αβγ ) in subcell (αβγ ) is given, in matrix notation, by

σ (αβγ ) = C(αβγ )ε(αβγ ) − �(αβγ ) T − σ I (αβγ ), (34)
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where C(αβγ ) and �(αβγ ) are the stiffness and thermal-stress tensors of the material that fills subcell (αβγ ). The
inelastic stress σ I (αβγ ) is included in order to model multiphase composites with thermo-inelastic phases. The
inelastic strain that is related to σ I (αβγ ) is governed either by the Prandtl–Reuss equations of classical plasticity or
by an appropriate viscoplastic flow rule.

An approximate solution for the displacement field is constructed based on volumetric averaging of the field
equations together with the imposition of the periodic boundary conditions and continuity conditions in an average
sense between the subcells used to characterize the materials’ microstructure. This is accomplished by approximat-
ing the fluctuating displacement field in each subcell of the generic cell of Fig. (1c) using a quadratic expansion in
terms of local coordinates (ȳ

(α)
1 , ȳ

(β)
2 , ȳ

(γ )
3 ) centered at the subcell’s midpoint. A higher-order representation of the

fluctuating field is necessary in order to capture the local effects created by the field gradients and the microstructure
of the composite.

The second-order expansion of the displacement vector u(αβγ ) in the subcell is given in terms of the local
coordinates of the subcell as follows:

u(αβγ ) = ε̄ · x + W(αβγ )

(000) + ȳ
(α)
1 W(αβγ )

(100) + ȳ
(β)
2 W(αβγ )

(010) + ȳ
(γ )
3 W(αβγ )

(001)

+ 1

2

(
3ȳ

(α)2
1 − d2

α

4

)
W(αβγ )

(200) + 1

2

(
3ȳ

(β)2
2 − h2

β

4

)
W(αβγ )

(020) + 1

2

(
3ȳ

(γ )2
3 − l2

γ

4

)
W(αβγ )

(002) , (35)

where W(αβγ )

(000) , which is the fluctuating volume-averaged displacement vector, and the higher-order terms W(αβγ )

(lmn) ,
must be determined from the coupled governing equations (19) as well as the periodic boundary conditions
(20)–(25) that the fluctuating field must fulfill, in conjunction with the interfacial continuity conditions between
subcells. The total number of unknowns that describe the fluctuating field in the subcell (αβγ ) is 21. Consequently,
the governing equations for the interior and boundary cells form a system of 21NαNβNγ algebraic equations in the
unknown field coefficients that appear in the quadratic expansions (35).

The final form of this system of equations can be represented symbolically by

KU = f + g, (36)

where the structural stiffness matrix K contains information on the geometry and mechanical properties of the
materials within the individual subcells (αβγ ) within the cells comprising the multiphase periodic composite. The
displacement vector U contains the unknown displacement coefficients in each subcell that appear on the right-hand
side of Eq. (35), namely

U = [U(111), . . . , U(NαNβNγ )], (37)

where in subcell (αβγ ) these coefficients, which appear on the right-hand side of Eq. (35), are

U(αβγ ) = [
W(000), W(100), W(010), W(001), W(200), W(020), W(002)

](αβγ )
. (38)

The force f contains information on the thermomechanical properties of the materials filling the subcells, the applied
average strains ε̄ij and the imposed temperature deviation T . The inelastic force vector g appearing on the right-
hand side of Eq. (36) contains the inelastic effects given in terms of the integrals of the inelastic strain distributions.
These integrals depend implicitly on the elements of the displacement coefficient vector U, requiring an incremental
solution procedure of Eq. (36) at each point along the loading path; see [8,9] for more details. It should be noted that,
since HFGMC model is based on the implementation of the governing equations (19) and the various interfacial
and periodic conditions in the average (integral) sense, there are no derivatives at the boundaries that do not exist
and singularities do not arise in Eq. (19).

The solution of Eq. (36) enables the establishment of the following localization relation which expresses the
average strain ε̄(αβγ ) in the subcell (αβγ ) in terms of the external applied strain ε̄ in the form:

ε̄(αβγ ) = AM(αβγ )ε̄ + AT (αβγ ) + AI (αβγ ), (39)

where AM(αβγ ) is the mechanical-strain concentration matrix of the subcell (αβγ ); AT (αβγ ) is a vector that involves
the current thermoelastic effects in the subcell and AI (αβγ ) is the corresponding inelastic strain vector. It is worth
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mentioning that, whereas AM(αβγ ) represents a mapping between the global and local strain tensors, AT (αβγ ) and
AI (αβγ ) do not represent a mapping between the global thermal and inelastic strains in the same sense as AM(αβγ ).
Thus, these two terms may be referred to as thermal and inelastic forcing effects.

The final form of the effective constitutive law of the multiphase thermo-inelastic composite, which relates the
average stress σ̄ and strain ε̄, is established by employing the definition of the average stress in the composite:

σ̄ = 1

DHL

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγ σ̄ (αβγ ), (40)

where σ̄ (αβγ ) is the average stress in the subcell.

σ̄ = C∗ ε̄ − �∗ T − σ̄ I. (41)

In this equation C∗ is the effective elastic stiffness matrix of the composite which is given by the closed-form
expression:

C∗ = 1

DHL

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγ C(αβγ ) AM(αβγ ). (42)

In addition, �∗ denotes the effective thermal-stress tensor of the composite. It can be determined from Levin’s
theorem [17] which directly provides the effective thermal-stress vector �∗ in terms of the individual thermal-stress
vectors �(αβγ ) of the phases and the mechanical-strain concentrations matrices AM(αβγ ), as follows (see Eq. (33)):

�∗ = 1

DHL

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγ [AM(αβγ )]tr�(αβγ ), (43)

where [AM(αβγ )]tr denotes the transpose of AM(αβγ ). The effective coefficients of thermal expansion can be readily
obtained from �∗ according to:

α∗ = C∗−1
�∗ (44)

Alternatively, it is possible to establish �∗ without utilizing Levin’s result. This can be accomplished by employ-
ing again Eq. (39), while utilizing the thermal-strain concentration vector AT (αβγ ), which can be determined by
applying a temperature deviation in the absence of mechanical loadings. The final form of the global constitutive
relation is given again by Eq. (41), but with �∗ expressed by

�∗ = −1

DHL

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγ

[
C(αβγ )AT (αβγ ) − �(αβγ )

]
. (45)

The two expressions (43) and (45) provide identical results.
The global inelastic stress in Eq. (41) is determined from

σ̄ I = −1

DHL

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγ

[
C(αβγ )AI (αβγ ) − R(αβγ )

(000)

]
, (46)

where the term R(αβγ )

(000) represents inelastic stress effects in the phase occupying the subcell (αβγ ).
It is possible to show that the effective stiffness matrix C∗ is symmetric. Following Haj-Ali and Pecknold [18],

this can be established by considering the global strain-energy density which, in matrix notation, is given by

1

2
[ε̄]trσ̄ = 1

2
[σ̄ ]tr ε̄ (47)

Hence

[ε̄]tr

DHL

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγ σ̄ (αβγ ) =
⎡
⎣ 1

DHL

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγ [σ̄ (αβγ )]tr

⎤
⎦ ε̄. (48)
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By employing the mechanical portions in Eq. (34) and (39), we may write this expression as

[ε̄]tr
Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγ C(αβγ )AM(αβγ )ε̄ =
⎡
⎣ Nα∑

α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγ [ε̄]tr[AM(αβγ )]tr[C(αβγ )]tr

⎤
⎦ ε̄. (49)

This implies that

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγ C(αβγ )AM(αβγ ) =
Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγ [AM(αβγ )]tr[C(αβγ )]tr. (50)

This relation shows that C∗ in Eq. (42) is indeed symmetric: C∗ = [C∗]tr .
Extensive comparisons between the predicted effective thermo-elastic constants provided by the HFGMC model

with finite-element solutions can be found in [19]. Numerous verifications of the reliability of the predicted inelastic
behavior of composites under various types of thermo-elastic loadings can be found in [8,9].

We conclude this section by mentioning that while the HFGMC theory seems like the finite-element procedure in
that it considers a discretized geometry upon which interfacial and periodic conditions are imposed, the formulation
is completely unrelated to the finite-element approach. The HFGMC theory is not based on a variational principle,
nor does it employ the concept of nodes. In the present approach, exact displacement-field continuity between
adjacent domains is not required, whereas the finite-element procedure requires satisfaction of exact displacement
continuity at the nodes. The governing equations in the present theory are enforced in a volume-averaged sense
for each subcell, while the continuity of tractions, displacements and periodic conditions are imposed in the inte-
gral sense (in the traditional finite-element analysis tractions continuity is not imposed). This feature renders the
HFGMC theory far less sensitive to mesh refinement as compared to the finite-element procedure since, even with
a coarse “mesh” representation, the theory is unconditionally convergent in the sense that the governing conditions
are satisfied. As in the finite-element method, refinement of geometric discretization does lead to improved field
accuracy within the HFGMC theory, although the effect is less pronounced.

3 Two-way thermomechanically coupled micromechanical analysis

In this section, the coupled energy equation for anisotropic thermo-elastic materials is presented together with the
associated coefficients of heat conductivities and heat capacities. Next, the homogenization technique for multi-
phase composites in which the thermo-elastic constituents are modeled by a two-way TMC is presented. This is
followed by the method of solution of the RUC problem in the framework of HFGMC model.

3.1 The energy equation

Consider a homogeneous thermo-elastic anisotropic material. By expanding the Helmholtz free-energy function
into a power series of the second order and employing the first and second laws of thermodynamics, Christensen
[1, Chapter 9] obtained the constitutive equation (12) for the stress tensor and the following expression for the
entropy s per unit mass

ρs = � : ε + ρcv

T

TR

, (51)

where ρ is the mass density, cv is the specific heat at constant deformation:

cv = TR

[
∂s

∂T

]
ε

(52)

and TR is a reference temperature. In addition, the energy equation is given in the absence of heat sources by

ρcv

∂T

∂t
+ ∇ · q = −TR � : ∂ε

∂t
, (53)
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where t is the time and q is the heat flux which is related to the second-order thermal-conductivity tensor k by the
Fourier’s law

q = −k · ∇T . (54)

Alternatively, the Gibbs free energy rather than the Helmholtz energy function can be manipulated. As a result,
Christensen [1, Chapter 9] obtained instead of Eq. (12) the constitutive equation

ε = S : σ + αT , (55)

where S is the compliance tensor of the material and α is its coefficient of thermal-expansion second-order tensor.
The entropy s in this case takes the form

ρs = α : σ + ρcp

T

TR

, (56)

where cp is the specific heat at constant stress

cp = TR

[
∂s

∂T

]
σ

. (57)

The corresponding energy equation is given by

ρcp

∂T

∂t
+ ∇ · q = −TR α : ∂σ

∂t
. (58)

It can be shown that

ρcp − ρcv = TR α : C : α. (59)

3.2 The homogenized energy equation

In the two-way TMC homogenization analysis both the displacements and the temperature deviation from a reference
temperature are asymptotically expanded. The displacement-vector expansion is given by (cf. Eq. (1))

u(x, y, t) = u0(x, y, t) + δ u1(x, y, t) + · · · , (60)

which emphasizes the temporal dependence, whereas the temperature-deviation expansion has the form

T (x, y, t) = T 0(x, y, t) + δ T 1(x, y, t) + δ2 T 2(x, y, t) + · · · , (61)

where the same periodicity conditions that were given by Eq. (3) hold for the coefficients uξ (x, y, t) and T ξ (x, y, t).
The heat flux q is given by Eq. (54) where as in Eq. (13),

k(x) = k(y). (62)

By utilizing Eq. (4), the heat flux can be represented by

q = 1

δ
q0 + q1 + δq2 + O(δ2), (63)

where

q0 = −k · ∇yT
0, q1 = −k · [∇xT

0 + ∇yT
1], q2 = −k · [∇xT

1 + ∇yT
2]. (64)

By substituting q in the energy equation (53) and using Eq. (4) and (7), we obtain the following relation

ρcv

∂

∂t

[
T 0 + O(δ)

]
+

(
∇x + 1

δ
∇y

)
·
[

1

δ
q0 + q1 + δq2 + O(δ2)

]
= −TR� : ∂

∂t

[
ε0

x + ε1
x + O(δ)

]
. (65)

By equating terms of the order of 1/δ2, we obtain

∇y · q0 = 0. (66)
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It follows from the definition of q0 that T 0 = T 0(x, t) is independent of y.
By equating terms of the order of 1/δ, we obtain

∇y · q1 = 0. (67)

The requirement that the temperature and normal heat-flux vector should be periodic on the RUC implies that
(cf. Eqs. (20–25)):

T 1(y1 = 0, t) = T 1(y1 = D, t), q1(y1 = 0, t) · e1 = q1(y1 = D, t) · e1, (68,69)

T 1(y2 = 0, t) = T 1(y2 = H, t), q1(y2 = 0, t) · e2 = q1(y2 = H, t) · e2, (70,71)

T 1(y3 = 0, t) = T 1(y3 = L, t), q1(y3 = 0, t) · e3 = q1(y3 = L, t) · e3. (72,73)

In conjunction with the definition of q1, Eq. (67), together with the above periodicity requirements and that T 0

is independent of y, forms a boundary-value problem over RUC for a prescribed ∇xT
0(x, t). The solution of this

problem yields

∇yT
1(x, y, t) = Ãk(y) · ∇xT

0(x, t). (74)

Consequently, the total temperature gradient is given by

∇xT (x, y, t) = ∇xT
0(x, t) + Ãk(y) · ∇xT

0(x, t) = [I2 + Ãk(y)] · ∇xT
0(x, t) ≡ Ak(y) · ∇xT

0(x, t), (75)

where I2 is the second-order unit tensor. The average of the total temperature gradient taken over the RUC is given
by

〈∇xT (x, y, t)〉 = 1

Vy

∫
Vy

[
∇xT

0(x, t) + ∇yT
1(x, y, t)

]
dVy = ∇xT

0(x, t), (76)

since the second term in the integral vanishes due to the periodicity of the temperature when employing the diver-
gence theorem.

The heat flux q is given according to Eqs. (63), (64) and (75) by

q = q1 + O(δ) = −k(y) · Ak(y) · ∇xT
0(x, t) + O(δ). (77)

Hence the average of the heat flux q̄ over the RUC is given by

q̄ = −k∗ · ∇xT
0(x, t), (78)

where k∗ is the effective conductivity second-order tensor defined by

k∗ = 1

Vy

∫
Vy

k(y) · Ak(y)dVy. (79)

In the framework of the HFGMC model, the corresponding effective conductivity matrix can be computed from
Eq. (79) by changing the integration operation into a summation over the subcells (cf. Eq. (42)).

Finally, by equating terms of the order of δ0 in Eq. (65), the following equality holds

ρcv

∂

∂t
T 0(x, t) + ∇x · q1 + ∇y · q2 = −TR�(y) : ∂

∂t

[
ε0

x(x, t) + ε1
y(x, y, t)

]
. (80)

By employing Eq. (28), Eq. (80) takes the form[
ρcv + TR�(y) : AT (y)

] ∂

∂t
T 0(x, t) + ∇x · q1 + ∇y · q2 = −TR�(y) : AM(y) : ∂

∂t
ε̄(x, t). (81)

By taking the average of Eq. (81) over the RUC, the following average energy equation results:

(ρcv)
∗ ∂

∂t
T 0(x, t) − k∗∇2

xT 0(x, t) = −TR�∗ : ∂

∂t
ε̄(x, t), (82)
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where the effective value of ρcv is defined by

(ρcv)
∗ = ρcv + TR

Vy

∫
Vy

�(y) : AT (y) dVy (83)

with ρcv being the average of ρcv over the RUC. In establishing Eq. (82), Eqs. (77–78) have been utilized and
Levin’s result, Eq. (33), has been used to identify �∗. In addition, the average of ∇y · q2 vanishes because the
divergence theorem gives

1

Vy

∫
Vy

∇y · q2dVy = 1

�y

∫
�y

q2 · n d�y = 0, (84)

since the periodicity of the temperature causes q2 to be periodic and contributions from opposite sides on the
boundary of the RUC (n is the normal to its surface �y) cancel each other.

The corresponding homogenized constitutive equation can be easily established by employing the appropriate
expansions in Eq. (12). As a result, the strong form of the equilibrium equation can be easily shown to yield Eq. (19)
but with the prescribed constant temperature in the one-way TMC replaced here by the temperature T 0. The resulting
global constitutive equation is given by

σ̄ = C∗ : ε̄ − �∗ T 0. (85)

This equation is the counterpart of Eq. (30) where the prescribed constant temperature in the one-way TMC in the
latter is replaced here by the temperature T 0 which is governed by the coupled homogenized energy equation (82).

In order to establish the homogenized energy equation that corresponds to (58), the following relation that
expresses the stress at a point in the RUC in terms of the global stress and temperature, is employed:

σ (x, y, t) = BM(y) : σ̄ (x, t) + BT (y) T 0(x, t), (86)

where BM and BT are referred to as mechanical and thermal-stress concentration tensors, respectively. By employ-
ing Eq. (28) (with T replaced by T 0) and (85), we obtain the following expressions for these tensors in terms of the
mechanical AM and thermal AT strain-concentration tensors

BM = C AM [C∗]−1, BT = C AMα∗ + C AT − �. (87, 88)

Consequently, by homogenizing the energy equation (58) and using the above expressions (87)–(88) in conjunction
with Eq. (33), the following energy equation is obtained

(ρcp)∗ ∂

∂t
T 0(x, t) − k∗∇2

xT 0(x, t) = −TRα∗ : ∂

∂t
σ̄ (x, t), (89)

where the effective value of ρcp is defined by

(ρcp)∗ = ρcp + TR

Vy

∫
Vy

α(y) : BT (y) dVy (90)

with ρcp being the average of ρcp over RUC. In the framework of the HFGMC model, the corresponding effective
values: (ρcv)

∗ and (ρcp)∗ can be readily computed from Eq. (83) and (90) by changing the integration operation
into summations over the subcells.

It has already been observed that the solution of the homogenized energy equations (82) and (89), which is
actually based on the one-way TMC problem, provides, in conjunction with the effective properties of the homoge-
nized material, the smeared temperature T 0(x, t) which is independent of the location y within the RUC. Thus, this
solution forms a representative value of the actual temperature variations within RUC caused by a far-field mechan-
ical loading. Furthermore, the temperature field is determined from the homogenized energy equations under a
steady-state condition such that the term that involves the effective thermal conductivity vanishes. Consequently,
the temperature field T 0(x, t) that is determined from the energy equation is not based upon the enforcement of the
continuity of temperature and heat-flux conditions between the constituents of the multiphase composite.

In the next section, the TMC equations in each constituent of the multiphase composite are considered in con-
junction with the micromechanical analysis. As a result, the detailed variation of the temperature in the RUC (just

123



Thermomechanically coupled micromechanical analysis of multiphase composites 123

like the mechanical field in the one-way TMC) is obtained. However, if a representative value of the temperature
only is sought, the resulting field variables obtained from a one-way TMC can be employed to solve Eq. (82) or
(89) without the need to perform the full two-way TMC micromechanical analysis that is described in the following
section.

We conclude this section by noting that, in the presence of inelastic effects, the corresponding homogenized
energy equations take the form

(ρcv)
∗Ṫ 0(x, t) − k∗∇2

xT 0(x, t) = ζ σ̄ (x, t) : ˙̄εI (x, t) − TR�∗ :
[ ˙̄ε(x, t) − ˙̄εI (x, t)

]
, (91)

(ρcp)∗Ṫ 0(x, t) − k∗∇2
xT 0(x, t) = ζ σ̄ (x, t) : ˙̄εI (x, t) − TRα∗ :

[ ˙̄σ (x, t) − ˙̄σ I (x, t)
]
, (92)

where σ̄ I and ε̄I are the global inelastic stress and strain of the composite. In addition, the rate of the global inelastic

work Ẇ I = σ̄ : ˙̄εI is usually multiplied by a partition factor ζ to indicate that only a portion of the inelastic work
(about 90%) is transformed into heat [20, Chapter 16]. Equation (91) coincides with the energy equation which is
given by Allen [21] for a homogeneous inelastic anisotropic material. In [22], the homogenized energy equation
(91), in conjunction with the older method of cells micromechanical analysis, was employed to investigate the
inelastic response and buckling of metal-matrix composite plates.

3.3 Solution of the repeating-unit-cell problem with full TMC

The HFGMC micromechanical model which is extended herein to a two-way TMC is employed to predict the fully
coupled thermo-inelastic behavior of triply periodic composites.

The local (subcell) constitutive equation of the material which, in general, is assumed to be thermo-inelastic is
given (cf. Eq. (34)), in matrix notation, by

σ (αβγ ) = C(αβγ )ε(αβγ ) − �(αβγ )T (αβγ ) − σ I (αβγ ). (93)

It should be emphasized that T (αβγ ) denotes, in the present two-way TMC coupling formulation, the unknown
temperature deviation in subcell (αβγ ) from a reference temperature. The equilibrium equation in subcell (αβγ )

is given by Eq. (19) which also includes the inelastic stress, and where all field variables are labeled by (αβγ ). The
associated energy equation that governs the material behavior in subcell (αβγ ) is given by

ρcvṪ
(αβγ ) + q(αβγ ) = ζσ (αβγ )ε̇I (αβγ ) − TR�(αβγ )

[
ε̇(αβγ ) − ε̇I (αβγ )

]
. (94)

For inelastic isotropic materials in which the inelastic flow is incompressible, we have

TR�(αβγ )
[
ε̇(αβγ ) − ε̇I (αβγ )

]
= TR�(αβγ )ε̇(αβγ ), (95)

As is shown in the following, the spatial derivatives in Eq. (94) can be eliminated. As a result, this equation is
reduced to an ordinary differential equation in time. Consequently, let us represent it in the following compact form

[M](αβγ )Ṫ (αβγ ) = [S](αβγ )T (αβγ ) + [Q̇](αβγ ), (96)

where [Q̇](αβγ ) denotes the right-hand side of Eq. (94). The implicit difference in time of Eq. (96) yields
[23, Chapter 6]{

[M](αβγ ) − ω�t[S](αβγ )
}

T
(αβγ )
n+1 =

{
[M](αβγ ) + (1 − ω)�t[S](αβγ )

}
T

(αβγ )
n + [Q](αβγ )

n − [Q](αβγ )
n−1 , (97)

where �t = tn+1 − tn and ω is a parameter (for the Crank–Nicolson scheme: ω = 1/2).
As in the one-way TMC micromechanical analysis, the basic assumption in the HFGMC model with two-way

TMC is that the displacement vector u(αβγ ) in each subcell is expanded into quadratic form in terms of its local
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coordinates (ȳ
(α)
1 , ȳ

(β)
2 , ȳ

(γ )
3 ), as was given by Eq. (35). Similarly, the unknown temperature deviation T (αβγ ) in

the subcell is also expanded as follows:

T (αβγ ) = T
(αβγ )

(000) + ȳ
(β)
1 T

(αβγ )

(100) + ȳ
(β)
2 T

(αβγ )

(010) + ȳ
(γ )
3 T

(αβγ )

(001) + 1

2
(3ȳ

(α)2
1 − d2

α

4
)T

(αβγ )

(200)

+1

2

(
3ȳ

(β)2
2 − h2

β

4

)
T

(αβγ )

(020) + 1

2

(
3ȳ

(γ )2
3 − l2

γ

4

)
T

(αβγ )

(002) , (98)

where T
(αβγ )

(000) is the volume-averaged temperature and the higher-order terms T
(βγ )

(lmn) are additional unknowns.

The unknown terms W(αβγ )

(lmn) and T
(αβγ )

(lmn) are determined from the fulfillment of the aforementioned coupled equi-
librium and energy equations, the periodic boundary conditions, Eqs. (20–25) and Eqs. (68–73), and the interfacial
continuity conditions of displacements, tractions, temperatures and heat fluxes between adjacent subcells. As in the
one-way TMC micromechanical analysis, the principal ingredient in the present micromechanical analysis is that
all these conditions are imposed in an average (integral) sense.

As a result of the imposition of these conditions, a linear system of algebraic equations at the current time step
is obtained which can be also represented by Eq. (36). Here, the displacement-temperature vector U contains the
unknown displacement and temperature which has the form (37), but in subcell (αβγ ) these coefficients, which
appear on the right-hand side of Eqs. (35) and (98), are

U(αβγ ) = [
W(000), T(000), W(100), T(100), W(010), T(010), W(001), T(001), W(200), T(200),

W(020), T(020), W(002), T(002)

](αβγ )
. (99)

The solution of Eq. (36) at a given time step enables the establishment of the following localization relation
which expresses the average strain ε̄(αβγ ) and temperature T̄ (αβγ ) in the subcell (αβγ ) to the externally applied
average strain ε̄ in the form:{

ε̄(αβγ )

T̄ (αβγ )

}
=

{
AM(αβγ )

AT (αβγ )

}
ε̄ +

{
VT (αβγ )

vT (αβγ )

}
+

{
VI (αβγ )

vI (αβγ )

}
, (100)

where AM(αβγ ) and AT (αβγ ) are the new mechanical and thermal concentration matrices of subcell (αβγ ) of the
present two-way micromechanical analysis; VT (αβγ ) and VI (αβγ ) are matrices that involve thermal and inelastic
effects in the subcell, and vT (αβγ ) and vI (αβγ ) are the corresponding scalars. These thermal and inelastic matrices
and the corresponding scalars arise due to the existence of [Q](αβγ )

n and [Q](αβγ )
n−1 in Eq. (97) at the previous time

steps. It should be noted that, in the present case of two-way TMC, the application of the far-field strain ε̄ induces
a temperature deviation T (αβγ ) from the reference temperature in the subcell.

In order to establish the global (macroscopic) constitutive equation of the composite, we utilize the definition
of the average stress in the composite in terms of average stress in the subcells; see Eq. (40). By substituting
Eqs. (93) and (100) in (40), one obtains the final form of the effective constitutive law of the multiphase fully
coupled thermo-inelastic composite, which relates the average stress σ̄ , strain ε̄, thermal stress σ̄ T and inelastic
stress σ̄ I as follows:

σ̄ = C∗ ε̄ − (σ̄ T + σ̄ I ). (101)

In this equation C∗ is the effective stiffness matrix which is given by

C∗ = 1

DHL

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγ

[
C(αβγ )AM(αβγ ) − �(αβγ )AT (αβγ )

]
. (102)

As in the one-way TMC analysis, the symmetry of C∗ can be verified by considering in this case the first term in
the RHS of Eq. (100). The global thermal stress σ̄ T is determined from

σ̄ T = − 1

DHL

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγ

[
C(αβγ )VT (αβγ ) − �(αβγ )vT (αβγ )

]
. (103)
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The global inelastic stress σ̄ I is of the from

σ̄ I = − 1

DHL

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγ

[
C(αβγ )VI (αβγ ) − �(αβγ )vI (αβγ ) − σ̄ I (αβγ )

]
. (104)

The average of the temperature deviation from TR over the RUC, which is predicted from the two-way microme-
chanics analysis, is given by

T̄ = 1

DHL

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγ T̄ (αβγ ), (105)

where T̄ (αβγ ) is the average temperature deviation in the subcell. In the following section the predicted temperature
average T̄ over the RUC will be compare with T 0 that is calculated from the homogenized energy equation (91). As
stated before, this energy equation involves the homogenized field variables and the effective composite’s param-
eters computed from the one-way micromechanics analysis in which, in particular, continuity of the temperature
and heat fluxes is not imposed. For homogeneous (unreinforced) materials, T̄ coincides, as is expected, with T 0.

4 Applications

The established two-way TMC HFGMC micromechanics analysis is applied here to predict the behavior of Al2O3

continuous reinforced composites in various circumstances. Two types of matrices are chosen to illustrate the com-
posites’ responses. In the first case an aluminum alloy is chosen as a matrix. In this case the inelastic effects of the
metallic matrix are involved in its energy equation (94). In the second type, a polymeric matrix (epoxy) is chosen.
Here, the TMC arises due to the existence of the total strain rates in Eq. (94) only. The material properties of the
Al2O3 fibers and the aluminum and epoxy matrices are given in Tables 1–3. The RUC, Fig. 1(b), in which the
continuous fiber is oriented in the y1-direction, has been divided into 32 × 32 subcells in order to model a circular
fiber cross-section with sufficient accuracy. In all cases the volume fraction of the Al2O3 fibers is 0.3 and the rate
of applied strain is 1 s−1.

The standard thermomechanical coupling coefficient in thermoelastic materials is given by

δ1 = E(1 + ν)α2TR

(1 − 2ν)(1 − ν)ρcv

, (106)

where E and ν are the Young’s modulus and Poisson’s ratio of the material, respectively. This parameter charac-
terizes the amount of thermomechanical coupling in these material (i.e., the coupling that is caused by the total

Table 1 Elastic and thermal parameters of the isotropic Al2O3 fibers

E(GPa) ν α (10−6/K) k (W/(m K)) ρcv (M J/(m3 K))

400 0.24 16.3 30 3.1

E, ν, α, k and ρcv denote the Young’s modulus, Poisson’s ratio, coefficient of thermal expansion, thermal conduction and heat capacity,
respectively

Table 2 Elastic, plastic and thermal parameters of the isotropic elastoplastic aluminum matrix

E(GPa) ν α (10−6/K) σy (MPa) Es (GPa) k (W/(m K)) ρcv (M J/(m3 K))

72.4 0.33 22.5 371.5 23 116.7 2.25

E, ν, α, σy , Es , k and ρcv denote the Young’s modulus, Poisson’s ratio, coefficient of thermal expansion, yield stress, secondary
modulus, thermal conduction and heat capacity, respectively
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Table 3 Elastic and thermal parameters of the isotropic epoxy-polymeric matrix

E(GPa) ν α (10−6/K) k (W/(m K)) ρcv (M J/(m3 K))

3.45 0.35 54 0.18 1.28

E, ν, α, k and ρcv denote the Young’s modulus, Poisson’s ratio, coefficient of thermal expansion, thermal conduction and heat capacity,
respectively

(a) (b)

(d)(c)

Fig. 2 (a) The uniaxial stress–strain response in one cycle of the unreinforced aluminum and, (b) the resulting induced temperature
deviation when ζ = 1 and 0 in Eq. (94). (c) The uniaxial response of the aluminum matrix in five cycles and, (d) the resulting induced
average temperature deviation when ζ = 1 and 0

strain-rate term in Eq. (94) but without including the inelastic effects). The values of thermomechanical coupling
coefficient δ1 of the monolithic Al2O3 fibers, aluminum and epoxy matrices are: δ1 = 0.031, 0.027 and 0.016,
respectively. Thus, the fibers exhibit the highest value, while the epoxy has the lowest value. However, due to the
existence of the inelastic effects in the aluminum matrix, this material exhibits a very strong TMC as is discussed
below.

It is instructive to exhibit the behavior of the unreinforced aluminum and the induced temperature deviation
during a cyclic uniaxial stress loading to a maximum strain of ∓2% in two different cases. To this end, Figs. 2(a)
and (b), show the resulting stress and the induced temperature deviation when in Eq. (94) ζ = 1 and ζ = 0. In the
first case full TMC is taken into account, while in the second case the heat generated by the rate of inelastic work,
Ẇ

(αβγ )

I = σ (αβγ ) : ε̇I (αβγ ), is neglected, while retaining the coupling caused by the term TR�(αβγ ) : ε̇(αβγ ) that
represents the total strain rate in this equation (which is accounted for by the coupling coefficient δ1). Figures 2(a)
and (b) clearly show that the heat generated by the rate of plastic work is predominant. Except in Fig. (2), ζ is taken
in all cases to be equal to 1. The effect of TMC on the stress–strain response is negligibly small. Indeed, under a
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(a) (b)

(d)(c)

Fig. 3 (a) The uniaxial stress–strain response in one cycle of the Al2O3/aluminum composite loaded in the fiber direction. (b) The
uniaxial response of the Al2O3/aluminum composite in five cycles loaded in the fibers direction and, (c) the resulting induced average
temperature deviations T̄ and T 0 as predicted by the two-way TMC, Eq. (105), and the homogenized energy equation (91), respectively.
(d) Surface plot of the temperature-deviation variation in the RUC at ε̄11 = 0.02

uniaxial stress loading at a strain of ε = 2%, the resulting thermal stress is σT = 3.5 M Pa as against inelastic stress
of σ I = 616 M Pa, thus forming a stress of σ = 631 M Pa.

The effect of the TMC caused by the inelastic effects of the unreinforced aluminum can be further observed
when this material is subjected to five complete cycles of uniaxial stress loading–unloading to a maximum strain
amplitude of ∓2%. The response of the material and the induced temperature deviation due to the two-way TMC
are shown in Figs. 2(c) and (d). Here, too, the effect of TMC on the resulting stress is negligible but the induced
temperature deviation is significant.

Consider next an Al2O3/aluminum continuous reinforced composite which is loaded in the 1-direction parallel
to the fibers. Its global stress–strain response in one complete cycle of loading–unloading is shown in Fig. 3(a). As
can be expected, the effect of the fiber is dominant in this type of loading. Figures 3(b) and (c) exhibit the behavior
of this composite under five cycles of loading–unloading to a maximum strain amplitude |ε̄11| = 0.02. In both
Figs. 3(a) and (b) the effect of TMC on the axial stress is negligible (just like the unreinforced aluminum), but the
induced temperature deviation caused by this coupling is significant. This is shown in Fig. 3(c) where the induced
average temperature deviation T̄ , computed from Eq. (105), which is based on the two-way TMC, and the induced
temperature deviation T 0, which is directly obtained from integrating the homogenized energy equation (91), are
exhibited. It is clearly seen that both curves are quite close in this case. Figure 3(d) presents a surface plot of the tem-
perature deviation distribution in the RUC of the composite that is loaded to a strain of ε̄11 = 2%. It is seen that the
temperature deviation varies between 10 K and −20 K. These values are significant and therefore, the information
provided by the homogenized energy equation: T 0 = −3 K at this strain is not useful as long as one is looking for
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(a) (b)

(d)(c)

Fig. 4 (a) The uniaxial stress–strain response in one cycle of the Al2O3 /aluminum composite loaded in the transverse direction to the
fibers. (b) The uniaxial response of the Al2O3/aluminum composite in five cycles loaded in the transverse direction to the fibers and,
(c) the resulting induced average temperature deviations T̄ and T 0 as predicted by the two-way TMC, Eq. (105), and the homogenized
energy equation (91), respectively. (d) Surface plot of the temperature-deviation variation in the RUC at ε̄22 = 0.02

critical hot spots in the composite where failure may take place. Thus, a two-way TMC micromechanical analysis
in such cases is necessary. It should be mentioned that, in contrast to the case of one-way TMC, σ̄ T

11 �= �∗
11T

0 in
the present case of two-way TMC.

Figure 4(a) shows the global stress–strain curve in one cycle of the Al2O3/aluminum unidirectional composite
that is loaded in the transverse 2-direction. By comparing this figure with Fig. 3(a), one can readily observe the
appreciable inelastic flow of the aluminum matrix. Figures 4(b) and (c) show the transverse response of the compos-
ite to five cycles of loading–unloading of the composite up to |ε̄22| = 0.02 and the resulting induced temperature
deviations T̄ and T 0 which are quite close to each other. In Fig. 4(d), a surface plot of the temperature deviation
distribution at ε̄22 = 2% is shown. Here, the temperature deviation varies between 20 K and −10 K whereas the
homogenized energy equation merely provides that T 0 = 0.6 K. Here too, σ̄ T

22 �= �∗
22T

0 in the present case of
two-way TMC, which is in contrast to the situation in one-way TMC.

In Figs. 5 and 6, the behavior of the unidirectional Al2O3/aluminum composite under transverse-shear ε̄23 and
axial-shear ε̄12 loadings of one and five cycles are shown. In Fig. 5, the maximum applied transverse-shear strain is
|ε̄23| = 0.02, whereas in Fig. 6 the maximum value of the applied axial-shear strain is |ε̄12| = 0.02. In particular,
Figs. 5(c) and 6(c) exhibit the induced temperature deviations as predicted from the two-way micromechanical
analysis and the homogenized energy equation when the Al2O3/aluminum unidirectional composite is subjected
to five cycles of transverse-shear and axial-shear loading, respectively. These figures show that the induced tem-
perature deviations are significant in both types of applied shear loadings. These temperatures are caused by the
two-way TMC in conjunction with the inelastic effects of the aluminum matrix. Such induced temperatures are,
of course, absent in a one-way TMC analysis. They are also absent in the case of polymeric matrices in which
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(a) (b)

(d)(c)

Fig. 5 The transverse shear stress–strain response in: (a) one cycle and, (b) five cycles of the Al2O3/aluminum composite. (c) The
average temperature deviations T̄ and T 0 as predicted by the two-way TMC, Eq. (105), and the homogenized energy equation (91),
respectively, which are induced by a transverse shear loading of the composite to a strain of ε̄23 = 0.02. (d) Surface plot of the
temperature deviation variation in the RUC at ε̄23 = 0.02

inelastic effects do not exist. The surface plots of the induced temperature deviation distributions that correspond
to an applied transverse shear of ε̄23 = 0.02 and applied axial-shear strain of ε̄12 = 0.02 are presented in Figs. 5(d)
and 6(d), respectively. The corresponding temperature deviations to Figs. 5(d) and 6(d) that are predicted by the
homogenized energy equation (91) are T 0 = 3.7 K and T 0 = 4 K, respectively, indicating again that these predic-
tions are not useful in predicting hot spots in the composite. In both types of shear loadings, σ̄ T

23 = σ̄ T
12 = 0 as well

as �∗
23 = �∗

12 = 0.
Thus far the two-way TMC micromechanical analysis has been applied on metal-matrix composites. Let us

consider a polymeric matrix composite, namely Al2O3/epoxy. Here the ratios T 0/T̄ between the induced temper-
ature deviations caused by the two-way TMC as predicted from Eqs. (91) and (105) are 1.6 K and 0.7 K for normal
loading in the axial and transverse directions, respectively. Thus, the correspondence between the predictions of
these equations is no longer close as in the previous case of metal-matrix composite. This is attributed to the higher
contrast of between the Young’s moduli of the Al2O3 fibers and the epoxy matrix rendering the homogenized energy
equation less useful, even for the prediction of the induced average temperature. In addition, a careful check of the
induced temperature-deviation distributions in the composite reveals again that the homogenized-energy-equation
prediction is not representative of the actual temperature variations as in the previously discussed cases.

5 Conclusions

In order to describe and predict the response of a multiphase composite that consists of several phases, an appropriate
micromechanical analysis should be established that takes into account the behavior of the individual constituents
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(a)

(c) (d)

(b)

Fig. 6 The axial shear stress–strain response in: (a) one cycle and, (b) five cycles of the Al2O3/ aluminum composite. (c) The average
temperature deviations T̄ and T 0 as predicted by the two-way TMC, Eq. (105), and the homogenized energy equation (91), respectively,
which are induced by an axial shear loading of the composite to a strain of ε̄12 = 0.02. (d) Surface plot of the temperature deviation
variation in the RUC at ε̄12 = 0.02

and their detailed interaction. In most of the thermo-elastic and thermo-inelastic micromechanical analyses, the
thermomechanical coupling between the mechanical and thermal effects is one-way in the sense that the temper-
ature affects the mechanical field, whereas the mechanical field has no effect on the temperature. In the present
investigation, however, a two-way thermomechanically coupled micromechanical analysis has been established for
the prediction of the response of multiphase composites whose constituents are, in general, thermo-inelastic mate-
rials. To this end, the fully coupled mechanical and energy equations of the inelastic phases have been employed.
As a result, the mechanical and thermal fields affect each other and their interactions are fully accounted for. The
micromechanical analysis derived here which can be referred to as the fully coupled high-fidelity generalized method
of cells, provides all the effective material parameters of the multiphase composite, namely, the effective stiffness
tensor, the coefficient of thermal-expansion tensor and thermal-conductivity tensor, as well as the heat capacities
at constant deformation and constant stress. It also provides the global thermo-inelastic constitutive equations of
the multiphase composite and the associated coupled energy equation. This micromechanical analysis is based on
the homogenization technique for periodic multiphase composites that provides the governing equations (equilib-
rium, energy, interface and periodicity conditions) in the RUC (which describes the response of the entire periodic
multiphase composite). The method of solution of the established governing equations is based on a higher-order
theory according to which the RUC is divided into several subcells where the displacement vector and temperature
deviation are expanded into second-order forms. These governing equations, as well as the constitutive ralations
of the phases, are imposed in the average (integral) sense. Consequently, the local strain tensor and temperature
deviation can be related to the externally applied strain in terms of the mechanical and thermal concentration tensors
together with addtional thermal and inelastic quantaties. As result, the effective stiffness tensor of the composite
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and its global thermal and inelastic stresses can be readily determined. Thus, the global (macroscopic) fully coupled
thermo-inelastic constitutive equations of the multiphase material have been established.

Results are given for fiber-reinforced metal-matrix and polymeric-matrix materials where the thermomechanical
coupling plays different roles due to the presence or absence of inelastic effects in the corresponding matrices. A
particular emphasis has been given to the induced temperature in the composite’s phases as a result of the application
of various types of far-field mechanical loadings.

The incorporation of the present two-way TMC micromechanical theory with a structural analysis is a subject
for a future research. The result of such a two-way thermomechanically coupled micro–macro structural analysis,
will enable the investigation of the effect of the full thermomechanical coupling between the mechanical and ther-
mal effects of the constituents on the behavior (e.g., bending and buckling) of metal-matrix and polymer-matrix
composite plates and shells (for example).

In the framework of smart-composite-materials research, the effects of two-way TMC in metal and polymeric-
matrix composites with shape-memory alloy fibers were investigated by Aboudi and Freed [24]. The additional
effect in such composites caused by the transformation-induced plasticity in the shape-memory alloy fibers was
considered by Freed and Aboudi [25].
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